Conserved interactions of the splicing factor Ntr1/Spp382 with proteins involved in DNA double-strand break repair and telomere metabolism

نویسندگان

  • Gernot Herrmann
  • Sanja Kais
  • Jan Hoffbauer
  • Kijwasch Shah-Hosseini
  • Nicole Brüggenolte
  • Heiko Schober
  • Margaret Fäsi
  • Primo Schär
چکیده

The ligation of DNA double-strand breaks in the process of non-homologous end-joining (NHEJ) is accomplished by a heterodimeric enzyme complex consisting of DNA ligase IV and an associated non-catalytic factor. This DNA ligase also accounts for the fatal joining of unprotected telomere ends. Hence, its activity must be tightly controlled. Here, we describe interactions of the DNA ligase IV-associated proteins Lif1p and XRCC4 of yeast and human with the putatively orthologous G-patch proteins Ntr1p/Spp382p and NTR1/TFIP11 that have recently been implicated in mRNA splicing. These conserved interactions occupy the DNA ligase IV-binding sites of Lif1p and XRCC4, thus preventing the formation of an active enzyme complex. Consistently, an excess of Ntr1p in yeast reduces NHEJ efficiency in a plasmid ligation assay as well as in a chromosomal double-strand break repair (DSBR) assay. Both yeast and human NTR1 also interact with PinX1, another G-patch protein that has dual functions in the regulation of telomerase activity and telomere stability, and in RNA processing. Like PinX1, NTR1 localizes to telomeres and associates with nucleoli in yeast and human cells, suggesting a function in localized control of DSBR.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structure of the Rad50 DNA double-strand break repair protein in complex with DNA.

The Mre11-Rad50 nuclease-ATPase is an evolutionarily conserved multifunctional DNA double-strand break (DSB) repair factor. Mre11-Rad50's mechanism in the processing, tethering, and signaling of DSBs is unclear, in part because we lack a structural framework for its interaction with DNA in different functional states. We determined the crystal structure of Thermotoga maritima Rad50(NBD) (nucleo...

متن کامل

The study of dose gamma rays of 192Ir source on DNA single strand break (SSB) and DNA double strand break (DSB) in soft tissue phantom

Introduction: Passage of ionizing radiation through the organs of living creatures develops clusters of damaged nucleotides inside the DNA rounds. 192Ir Gamma source is one of the most widely used sources in brachytherapy of cervical and prostate cancer. Thus, in this research, we investigated the flux of photons and its resulting secondary electrons, the single-strand break (S...

متن کامل

Valproic Acid-Mediated Reduction of DNA Double-Strand Break Reparation Capacity of Irradiated MCF-7 Cells

Introduction H istone deacetylase inhibitors (HDIs), as  radiation sensitizing agents, are considered as a novel class of anti-cancer factors, which are studied in various tumor cell-lines. Valproic acid (VPA) is an HDI, which is effectively used in the treatment of epilepsy, migraines, and some particular types of depression. In this study, we evaluated the effects of VPA and ionizing radiatio...

متن کامل

Cooperation of DNA-PKcs and WRN helicase in the maintenance of telomeric D-loops

Werner syndrome is an inherited human progeriod syndrome caused by mutations in the gene encoding the Werner Syndrome protein, WRN. It has both 3'-5' DNA helicase and exonuclease activities, and is suggested to have roles in many aspects of DNA metabolism, including DNA repair and telomere maintenance. The DNA-PK complex also functions in both DNA double strand break repair and telomere mainten...

متن کامل

RTEL1 contributes to DNA replication and repair and telomere maintenance

Telomere maintenance and DNA repair are important processes that protect the genome against instability. mRtel1, an essential helicase, is a dominant factor setting telomere length in mice. In addition, mRtel1 is involved in DNA double-strand break repair. The role of mRtel1 in telomere maintenance and genome stability is poorly understood. Therefore we used mRtel1-deficient mouse embryonic ste...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 35  شماره 

صفحات  -

تاریخ انتشار 2007